Poisson-Voronoi tessellations and fixed price for higher rank lattices

McGill DDC Seminar

Amanda Wilkens

 $9~{\rm May}~2023$

University of Texas at Austin

Background

History of the IPVT

Budzinski, Curien, Petri (2022): description of the pointless Voronoi tessellation on \mathbb{H}^2

D'Achille, Curien, Enriquez, Lyons, Unel (2023): construction of the ideal Poisson-Voronoi tessellation (IPVT) on \mathbb{H}^d

Fraczyk, Mellick, Wilkens (soon): construction of the IPVT on a higher rank real semisimple Lie group G

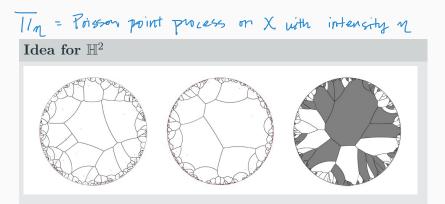


Figure from: Thomas Budzinski, Nicolas Curien, and Bram Petri, On Cheeger constants of hyperbolic surfaces, arXiv e-prints (2022), arXiv:2207.00469.

IPVT construction

G= Aut(T,) × Aut(T2) ICSC CSMS Horocones We call the object on which the IPVT lives a horocone. The horocone for $G = SL(2, \mathbb{R})$ and $X = \mathbb{H}^2$ is G modded out by the subgroup of upper triangular matrices with ones on the diagonal, equivalently $\partial X \times \mathbb{R}$, equipped with Lebesgue X = G/12. measure. cost of Poion each is the same Theorem (FMW) Any nonamenable locally compact second countable (lcsc) group has a horocone. GNG For a semisimple real Lie group G the horocone is G/U, equivalently $\partial X \times \mathbb{R}$, equipped with a G-invariant measure unique up to scaling. G=SL(n, IR), P= minimal parabolic of GI, U < P Max minimal.

Horocone construction

Fix a basepoint $o \in X$. Let d be a G-invariant metric on X and $m \in G$ -invariant measure on X. Define the space of "distance-like" functions on X as ve want to get Busemann functions/points on 2X $D := \operatorname{cl}\{x \mapsto d(x, y) + t | y \in X, t \in \mathbb{R}\} \subseteq \mathcal{C}(X).$ We have $G \cap D$ with $gf(x) := f(g^{-1}x)$. For $t \in \mathbb{R}$, define $t_t: X \to D$ by $\iota_t(x)(y) = d(x, y) - t$, where $y \in X$. Let $\eta_t := m(B(o,t))^{-1} \ (t \to \infty \Leftrightarrow \eta_t \to 0)$. Set $\mu_t := \eta_t(\iota_t)_*(m)$. puch forward of m under ι_t

Groal: Gr-inv. measure on D

Horocone construction, continued

The sequence of measures $\{\mu_t\}_{t\in\mathbb{R}}$ has a non-zero subsequential weak-* limit μ as $t \to \infty$ whenever (X, d) has exponential growth.

In particular, such a μ exists for any nonamenable lcsc group.

Then μ is our desired *G*-invariant measure on *D*, and (D, μ) is the horocone for *G*.

Horocones and the IPVT

The G-invariant measure μ on D determines the Poisson point process on D:

The limit $\lim_{t\to\infty} \Pi_{\eta_t}$ where each Π_{η_t} is a Poisson point process on X with intensity η_t converges to a Poisson point process on the horocone G/U with positive intensity.

For $x \in X$, if $\beta_{3} \in 6/\mathcal{U}$

 $\beta_{gU}(x) = \min\{\beta_{hU}(x)|hU \text{ belongs to the Poisson on } G/U\}$

then x lives in the IPVT cell of gU.

Cost review

How to prove G and its lattices have fixed price one Use the following theorems from Abert, Mellick (2021): The Poisson point process action on G has maximal cost out of all essentially free, measure-preserving actions on G.

e Let Π be a Poisson point process on G and D a complete and separable metric space with a G-action. Suppose $\Phi_t(\Pi)$ is a sequence of measurable and equivariant D-valued factors of Π such that $\Phi_t(\Pi)$ weakly converges to a random process Υ on D. Then Π and $\Pi \times \Upsilon$ have the same cost.

• If G has fixed price one, then so does any lattice in G.

Unbounded walls

Theorem (FMW)

For a higher rank real semisimple Lie group G, each pair of cells in its IPVT almost-surely share an unbounded wall.

Sketch of the proof

Let Π be the Poisson point process on G/U associated to the IPVT on X. Fix any two points belonging to Π ; call them g_1U, g_2U . Define W(r) to be set of points $x \in X$ such that: 870 XG W(r) belongs to bdy shared by cells of g. U. g. 2 U $\beta_{g_1U}(x) = \beta_{g_2U}(x)$ and $\beta_{gU}(x) > \beta_{g_1U}(x) + r \text{ for every } gU \in \Pi \setminus \{g_1U, g_2U\}\}.$ $\begin{array}{c} ll_2 \leftarrow n \vdash d \cup f \\ x \text{ only sees } \\ (ells \text{ of } g, u, g_2u) \end{array}$

Sketch of the proof, continued

Define W(r) to be set of points $x \in X$ such that:

$$\beta_{g_1U}(x) = \beta_{g_2U}(x) \checkmark$$

and

$$\beta_{gU}(x) > \beta_{g_1U}(x) + r \text{ for every } gU \in \Pi \setminus \{g_1U, g_2U\}\}.$$

Claim: W(r) is almost-surely unbounded.

We start with $x \in X$ such that $\beta_{g_1U}(x) = \beta_{g_2U}(x)$. Then we produce an unbounded set contained in W(r) from an action on x.

Sketch of the proof, continued $g_1 \cup g_2 \cup g_2 \cup g_1$ The stabilizer subgroup $S := g_1 U g_1^{-1} \cap g_2 U g_2^{-1}$ fixes $g_1 U, g_2 U$ but mixes up almost every other point of Π . S = IR Subgp S is non-compact only when G is higher rank. Howe-Moore implies $\lim_{i\to\infty} \mu(B \cap s_i B) = 0$ for Borel $B \subseteq G/U$ and any escaping sequence $\{s_i\}_{i \in \mathbb{N}} \subseteq S$. Set $B := \{gU \in G/U : \beta_{gU}(x) < \beta_{g_1U}(x) + r\}$. $[\mathcal{U}(\mathfrak{G}) \prec \mathfrak{Q}]$ The set of porter in bill that are "closer" to x then By w(x)+v As a consequence of the horocone construction, $\mu(B) < \infty$.

Sketch of the proof, continued By Howe-Moore, there exists a subsequence $\{s_{i_j}\} \subseteq \{s_i\}$ such that for large enough $j \ll k$, $\mu(s_{i_j}B \cap s_{i_k}B)$ is arbitrarily small. Let E_j be the event $\{\Pi(s_{i_j}B) = 0\}$. $(f \cap S_{i_j}B) = 0\}$.

We can apply a version of Borel-Cantelli to conclude the E_j occur infinitely often almost-surely.

For each E_j which occurs, we have $s_{i_j}^{-1}x \in W_{\mathbf{k}}$. So $W_{\mathbf{k}}$ is unbounded almost-surely.